2025年陕西专升本高等数学考试大纲

2025-04-23 08:34:00来源:网络

  I.考试范围

  普通高等教育专升本招生考试高等数学考试范围包括:函数与极限,一元函数微分学及其应用,一元函数积分学及其应用,向量代数与空间解析几何,多元函数微分学,多元函数积分学,无穷级数,常微分方程。

  I.考试内容与要求

  要求考生全面掌握高等数学的基本概念,基本理论和基本运算技能,具有本科学习所必需的抽象思维能力、逻辑推理能力、基本运算能力以及综合运用所学知识分析问题和解决问题的能力。具体要求可分为较高要求(用B来表示)和一般要求(用A来表示)两个层次:较高要求需要考生深入理解、牢固掌握、熟练应用,其中概念、理论用“理解”一词表述,方法、运算用“掌握”一词表述;一般要求也是不可缺少的,只是在要求上低于前者,其中概念、理论用“了解”一词表述,方法、运算用“会”或“了解”表述。

  各部分考试内容及具体要求如下:

  一、函数与极限

  考试内容

  1.函数的概念及表示法。函数的有界性、单调性、奇偶性和周期性。反函数、隐函数和复合函数。基本初等函数的性质及其图形。初等函数。简单应用问题中函数关系的建立。

  2.数列极限的定义及性质。函数极限的定义及性质。函数的左、右极限。无穷小与无穷大。无穷小的比较。极限的四则运算。极限存在的夹逼准则和单调有界准则。两

  3.函数连续的概念。函数间断点及其类型。连续函数的和、差、积、商、复合函数、反函数的连续性。初等函数的连续性。闭区间上连续函数的性质(最大值、最小值定理,零点定理,介值定理)。

  考试要求

  1.理解函数的概念,掌握函数表示法。

  2.了解函数的有界性、单调性、奇偶性和周期性。

  3.理解复合函数的概念,了解反函数及隐函数的概念。

  4.掌握基本初等函数的性质及其图形。

  5.会建立简单应用问题中的函数关系。

  6.理解数列极限和函数极限的概念,理解函数的左、右极限的概念以及极限存在与左、右极限之间的关系。

  7.掌握极限的性质及四则运算法则。

  8.掌握极限存在的两个准则,并会利用其求极限。

  9.掌握利用两个重要极限求极限的方法。

  10.理解无穷小、无穷大的概念,会无穷小的比较。

  11.掌握用等价无穷小代换求极限的方法。

  12.理解函数连续性的概念,会判别函数间断点的类型。

  13.会用初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理,零点定理和介值定理)解决相关问题。

  二、一元函数微分学及其应用

  考试内容

  1.导数的概念。导数的几何意义和物理意义。平面曲线的切线和法线。函数可导性和连续性之间的关系。函数和、差、积、商的求导法则。复合函数及反函数的求导法则。隐函数的导数及对数求导法。由参数方程所确定的函数的求导法则。基本初等函数的导数公式。高阶导数的概念。

  2.微分的概念。微分的几何意义。函数可导与可微的关系。微分的四则运算法则。微分形式不变性,

  3.罗尔中值定理。拉格朗日中值定理。柯西中值定理。罗必达法则。

  4.应用导数讨论:函数单调性,函数的极值,函数的最大值和最小值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,弧微分。

  考试要求

  1.理解导数的概念及其几何意义,会求平面曲线的切线方程和法线方程。

  2.了解导数的物理意义。

  3.理解函数的可导性与连续性之间的关系。

  4.掌握导数的四则运算法则和复合函数的求导法则,会求分段函数和反函数的导数。

  5.掌握基本初等函数的导数公式,了解初等函数的可导性。

  6.理解高阶导数的概念,会求函数的n阶导数,掌握隐函数和由参数方程所确定的函数一阶与二阶导数。

  7.理解微分的概念及其几何意义。了解函数可导与可微的关系。

  8.掌握微分的四则运算法则,了解微分形式不变性。

  9.会用罗尔中值定理、拉格朗日中值定理解决相关问题,了解柯西中值定理。

  10.掌握用罗必达法则求未定式极限的方法。

  11.理解函数的极值概念,掌握用导数判断函数的单调性和求单调区间与极值的方法,掌握函数最大值和最小值的求法及其应用。

  12.会用导数判断函数图形的凹凸性,会求函数图形的凹凸区间和拐点。会求函数图形的水平和铅直渐近线,会描绘函数的图形。

剩余内容,请下载附件查看。

2025年陕西专升本高等数学考试大纲.docx

本文关键字:

更多>>
更多课程>>
更多>>
更多内容
专升本课程
更多>>
更多公开课>>
更多>>
更多课程>>